Home

DISCLAIMER

This blogger is not associated with NCERT or CBSE

Sunday, August 23, 2020

NCERT SOLUTIONS 4. QUADRATIC EQUATIONS

 

1. Check whether the following are quadratic equations:

(i) (x + 1)2 = 2(x – 3)

(ii) x2 – 2x = (–2)(3 – x

(iii) (x – 2)(x + 1) = (x – 1)(x + 3)

(iv) (x – 3)(2x + 1) = x(x + 5)

(v) (2x – 1) (x – 3) – (x + 5) (x – 1)

(vi) x2 + 3x +1 = (x – 2)2

(vii) (x + 2)3 = 2x(x2 – 1)

(viii) x3 – 4x2 – x + 1 = (x – 2)3

Answer:

 (x + 1)2 = 2(x – 3)

  (x + 1)2 = 2 (x – 3)

x2 + 2x + 1 = 2x – 6

 x2 + 2x + 1 – 2x + 6 = 0

  x2 + 7=0

This is of the form ax2 + bx + c = 0

(x + 1)2 = 2(x – 3) is a quadratic equation.

         (ii) x2– 2x = (–2) (3 – x)

           x2 – 2x = –6 + 2x

               x2 – 2x – 2x + 6 = 0

               x2 – 4x + 6 = 0

This is of the form ax2 + bx + c = 0

x2 – 2x = (–2) (3 – x) is a quadratic equation.

         (iii) (x – 2) (x + 1) = (x – 1) (x + 3)

             x2 – x – 2 = x2 + 2x – 3

                 x2 – x – 2 – x2 – 2x + 3 = 0

                 –3x + 1 = 0

This is not the form of ax2 + bx + c = 0

(x – 2) (x + 1) = (x – 1) (x + 3) is not quadratic equation.

         (iv) (x – 3) (2x + 1) = x(x + 5)

          2x2 + x – 6x – 3 = x2 + 5x

          2x2 – 5x – 3 – x2 – 5x – 0

         x2 + 10x – 3 = 0

                 This is of the form ax2 + bx + c = 0

  (x – 3) (2x + 1) = x(x + 5) is a quadratic equation.

         (v) (2x – 1) (x – 3) = (x + 5) (x – 1)

              2x2 – 6x – x + 3 = x2 – x + 5x – 5

                2x2 – x2 – 6x – x + x – 5x + 3 + 5 = 0

                 x2 – 11x + 8 = 0

                 This is of the form ax2 + bx + c = 0

(2x – 1) (x – 3) = (x + 5) (x – 1) is a quadratic equation.

         (vi) x2 + 3x + 1 = (x – 2

             x2 + 3x + 1 = (x – 2

                 x2 + 3x + 1 = x2 – 4x + 4

                x2 + 3x + 1 – x2 + 4x – 4 =0

                 7x – 3 = 0

This is not the form of ax2 + bx + c = 0

  x2 + 3x + 1 = (x – 2 is not a quadratic equation.

         (vii) (x + 2)3 = 2x(x2 – 1)

                  (a+b)3  = a3 + 3a2b + 3ab2 + b3

                  x3 + 3x2(2) + 3x(2)2 + (2)3 = 2x3 – 2x

                 x3 + 6x2 + 12x + 8 = 2x3 – 2x

                 x3 + 6x2 + 12x + 8 – 2x3 + 2x = 0

                  –x3 + 6x2 + 14x + 8 = 0

This is not the form of ax2 + bx + c = 0

(x + 2)3 = 2x(x2 – 1) is not a quadratic equation.

         (viii) x3 – 4x2 – x + 1 = (x – 2)3

                   We have:

                   x3 – 4x2 – x + 1 = (x – 2)3

                  x3 – 4x2 – x + 1 = x3 + 3x2(– 2) + 3x(– 2)2 + (– 2)3

                  x3 – 4x2 – x + 1 = x3 – 6x2 + 12x – 8

                   x3 – 4x2 – x – 1 – x3 + 6x2 – 12x + 8 = 0

                   2x2 – 13x + 9 = 0

This is of the form of ax2 + bx + c = 0

x3 – 4x2 – x + 1 = (x – 2)3 is a quadratic equation.

2.   Represent the following situations in the form of quadratic equations:

   (i) The area of a rectangular plot is 528 m2. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.

 (ii) The product of two consecutive positive integers is 306. We need to find the integers.

  (iii) Rohan’s mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan’s present age.

 (iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.

Answer:

 (i) Let the breadth of the plot be x m.

Hence, the length of the plot is (2x + 1) m.

Area of a rectangle = Length × Breadth

                             (2x + 1) × x = 528

                          2x2 + x = 528

                          2x2 + x – 528 = 0

  Thus, the required quadratic equation is  2x2 + x – 528 = 0

(ii) Let the consecutive integers be x and x + 1.

According to the question

 x (x + 1) = 306

    x2 + x = 306

     x2 + x – 306 = 0

iii) Let Rohan’s age be x.

Hence, his mother’s age = x + 26

3 years hence,

Rohan’s age = x + 3

Mother’s age = x + 26 + 3 = x + 29

According to the question

(x + 3) × (x + 29) = 360

                  x2 + 29x + 3x + 87 = 360

                  x2 + 29x + 3x + 87 – 360 = 0

                  x2 + 32x – 273 = 0

(iv) Let the speed of train be x km/h.

 

In the second case, speed = x – 8 km/h


According to the question,

T2  - T1 = 3


480x – 480x + 3840 = 3x2 – 24x

3x2 – 24x -3840 = 0

x2 – 8x – 1280 = 0

EXERCISE 4.2

1.  Find the roots of the following quadratic equations by factorisation:

         (i) x2 – 3x – 10 = 0

        (ii) 2x2 + x – 6 = 0

         (iii) X2 +7X + 5  = 0

         (iv) 2x2 – x + 8 = 0

         (v) 100x2 – 20x + 1 = 0

Answer:

 (i) x2 – 3x – 10 = 0

           x2 – 3x – 10 = 0

              x2 – 5x + 2x – 10 = 0

              x (x – 5) + 2(x – 5) = 0

              (x – 5) (x + 2) = 0

              x – 5 = 0 x = 5

             or x + 2 = 0 x = –2

             Thus, the required roots are x = 5 and x = –2.

         (ii) 2x2 + x – 6 = 0

                We have:

                2x2 + x – 6 = 0

                2x2 + 4x – 3x – 6 = 0

                2x(x + 2) – 3 (x + 2) = 0

                (x + 2) (2x – 3) = 0

                 x + 2 = 0 x = –2

                or 2x – 3 = 0 x = 3/2

                Thus, the required roots are x = –2 and 3/2

No comments:

Post a Comment

Featured Post

mcq on probabilty

Loading…